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Priebeh krajského kola

Krajské kolo 41. ro¢nika Olympiady v informatike, kategoria A, sa kond 20. 1. 2026 v dopoludnajsich hodinach.
Na riesenie tloh maju sutaziaci 4 hodiny ¢istého casu. Rozne tlohy riesia stfaziaci na samostatné listy
papiera. Akékolvek pomocky okrem pisacich potrieb (napr. knihy, vypisy programov, kalkulacky) su zakizané.

Co ma obsahovat riesenie tlohy?
« Slovne popiste algoritmus.
Slovny popis rieSenia musi byt jasny a zrozumitelny i bez nahliadnutia do samotného algoritmu/programu.
e Zdovodnite spravnost vasho algoritmu.
e Uvedte a zdovodnite jeho ¢asovii a pamatovu zlozitost.

¢ Podrobne uvedte dolezité casti algoritmu, idedlne vo forme programu v nejakom beznom programovacom
jazyku (napr. C++, Python, Java, Pascal).

e V pripade, Zze pouzivate vo svojom programovacom jazyku kniznice, ktoré obsahuji implementované datové
Struktiry a algoritmy (napr. STL pre C++), v popise algoritmu struc¢ne vysvetlite, ako by ste napisali
program s rovnakou ¢asovou zlozitostou bez pouzitia kniznice.

Hodnotenie rieseni
Za kazdu tlohu mozete ziskat od 0 do 10 bodov.

Pokial nie je v zadan{ povedané ina¢, najdolezitejSie dve kritérid hodnotenia st v prvom rade spravnost a
v druhom rade efektivnost navrhnutého algoritmu. Na vyslednom podte bodov sa méze prejavit aj kvalita
popisu riesenia a zd6évodnenie tvrdeni o jeho spravnosti a efektivnosti.

Efektivnost algoritmu posudzujeme vypocitanim jeho Casovej zlozitosti — funkcie, ktora hovori, ako dlho vyko-
nanie algoritmu trva v zavislosti od velkosti vstupnych parametrov. Nezavisi pri tom na konstantnych faktoroch,
len na radovej rychlosti rastu tejto funkcie.

V zadani tloh uvadzame cast ,Hodnotenie“, v ktorej najdete priblizné limity na velkost vstupnych ddajov. Pod
pojmom ,efektivne vyriesit“ chapeme to, ze vas program spusteny na modernom pocitac¢i by mal dat odpoved
nanajvys do niekolkych sekind.

Udaje z tejto Casti zadania by mali sltzit hlavne na to, aby ste o rieSeni, ktoré vymyslite, vedeli priblizne
povedat, kolko bodov zan dostanete.
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A-11-1 Sizyfos a balvany

V rade vediucom zlava doprava je n balvanov. Pozicie, na ktorych stoja, si oc¢islované zaradom od 0 po n — 1.
Hmotnost balvanu, ktory stoji na pozicii 4, budeme oznacovat H[i].

Sizyfos mé za tlohu usporiadat balvany od najlahsieho po najtazsi, a to tak, aby na konci stéli na presne tych
istych n pozicidch, len v spravnom poradi — teda aby platilo H[0] < H[1] < H[2] < --- < H[n — 1]

Sizyfos si vymyslel algoritmus, pri ktorom nebude musief prenasat ziaden balvan na velki vzdialenost. Zakladom
Sizyfovho algoritmu bude postup, ktory si nazveme kolo. Kolo bude vyzerat nasledovne:

1. Na zadiatku kola Sizyfos pride na zaciatok radu (teda k pozicii 0).

2. Postupne p6jde popri balvanoch zlava doprava.

3. Vzdy, ked stretne balvan, ktory ma bezprostredne nalavo od seba balvan ostro tazsi, tak ich medzi sebou
vymeni: odtiahne tazsi o poziciu doprava a lahsi o poziciu dolava. Formalnejsie, ked Sizyfos stoji pri pozicii
1 a vidi, ze H[i — 1] > H[i], tak vymen{ balvany na pozicidch : — 1 a .

4. Kolo skonci, ked Sizyfos prejde aj okolo posledného balvanu v rade.

Sizyfos bude cely tento postup opakovat dovtedy, kym v nejakom kole nespravi ziadnu vymenu balvanov.

Podiloha A (2 body):
Dokazte, ze pre Tubovolni postupnost balvanov Sizyfov postup po konecnom pocte kol skondi.

Podiloha B (3 body):

Ukazalo sa, ze Sizyfos nevladze pohnuf balvan, ktorého hmotnost je ostro vécsia ako w. Upravil preto svoj
postup tak, ze keby mal vymenit dvojicu, v ktorej je niektory balvan pritazky, tak namiesto toho nespravi nic.
Na vstupe st ¢isla n, w a pole H obsahujice zaciatocné poradie hmotnosti balvanov. Navrhnite algoritmus,
ktory vypocita vysledné poradie balvanov po tom, ako Sizyfos dokonéi svoj postup. (Vystupom ma teda byt
obsah pola H na konci kola, v ktorom uz Sizyfos ni¢ nevymeni.)

Podiloha C (5 bodov):
Popiste algoritmus, ktory pre rovnaky vstup ako v podilohe B efektivne vypocita, kolko kol bude trvat Sizyfov
postup pre ttto konkrétnu postupnost balvanov. DokaZte spravnost svojho algoritmu.

Format rieseni a hodnotenie:

Podulohy mézete riesit kazda zvlast v Tubovolnom poradi. Podilohy B a C mozete tiez vyriesit obe naraz
pomocou jedného algoritmu. Na zisk plného poctu bodov je v kazdej z podtloh B a C potrebné najst algoritmus
s Casovou zlozitostou O(nlogn). Za rieSenie podiloh B a C s ¢asovou zlozitostou kvadratickou od n (alebo
horSou) mozete ziskat dokopy nanajvys 2 body.

Jeden bod strhneme algoritmom, ktoré fungujt len za predpokladu, ze vsetky hmotnosti v poli H st navzajom
rozne. Ak tento predpoklad vase rieSenie vyuziva, explicitne to uvedte.
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Priklady

Uvazujme n = 9 a postupnost balvanov s hmotnostami H = (10, 30, 20, 60, 50, 40, 80, 80, 70).
Pozrime sa najskor na situdciu, kedy Sizyfos vie hybat vSetkymi balvanmi (teda w > 80).
V prvom kole by Sizyfos postupoval nasledovne:

e Na pozicii 1 netreba ni¢ robit.

e Na pozicii 2 je balvan Tahsi od toho nalavo: . @ @ ‘ . ‘ ‘
e Tieto balvany vymeni: . ‘ . ‘ . . ‘

e Na pozicii 3 netreba ni¢ robit.

e Na pozicii 4 je balvan lahsi od toho nalavo, nastane vymena: . ‘ . ‘ . . ‘
e Po ich vymene je na pozicii 5 dalsi taky pripad: . ‘ . . ‘ ' ‘

o Na pozicidch 6 a 7 netreba nic robit.

e Na pozicii 8 spravi dalsiu vymenu: . . . . ’ ‘ “‘
e Na konci prvého kola vyzera pole H nasledovne: . . . . ‘ ‘ ‘

V druhom kole by Sizyfos spravil vymenu na pozicii 4 (balvany s hmotnostami 50 a 40) a potom na pozicii 7
(balvany s hmotnostami 80 a 70).
V tretom kole by uz Sizyfos nespravil Ziadnu vymenu. Proces teda skon¢il po troch kolach.

Vysledné pole H je usporiadané:
0 1 2 3 | 5 6 708

Ak by Sizyfos bol o ¢osi slabsi (w = 59), v prvom kole by postupoval nasledovne:

e Na pozicii 1 netreba ni¢ robit.

o Na pozicii 2 spravi vymenu (hmotnosti 30 a 20).

e Na pozicii 3 netreba ni¢ robit.

e Na pozicii 4 vymenu spravit nevladze, takze nespravi nic.

o Na pozicii 5 spravi vymenu (hmotnosti 50 a 40).

e Na pozicidch 6 a 7 netreba nic robit.

o Na pozicii 8 opét nevladdze spravit vymenu, takze aj tieto dva balvany ostand na miestach.

e Na konci prvého kola vyzera pole H nasledovne:
o 1 2 3 4 5 6 7 8

V druhom kole by uz Sizyfos nespravil ziadne vymeny.
Proces teda skonci po dvoch kolach vo vyssie zobrazenom stave.

Ak by bol Sizyfos v tej istej zadiatoCnej situdcii este slabsi (w = 27), hned v prvom kole nespravi Ziadne zmeny
a tym cely proces skondi.
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A-11-2  Obdiznik

V rovine je danych n > 10 navzajom réznych bodov. Navrhnite algoritmus, ktory zisti, ¢i vSetky tieto body
lezia na obvode nejakého (Iubovolne oto¢eného) obdlznika. Ak ano, jeden taky obdlznik najdite.

Format vstupu a vystupu

V prvom riadku vstupu je ¢islo n.

Zvysok vstupu tvori n riadkov, v i-tom z nich st dve celé ¢isla z; a y;: stradnice i-teho z bodov.

Na vystup vypiste bud retazec NIE, ak hladany obdlznik neexistuje, alebo stradnice troch vrcholov nejakého
obdlZnika, na ktorom lezia vSetky zadané body.

Obmedzenia a hodnotenie

Pri rieseni mozete predpokladat, Ze vsetky operécie s realnymi ¢islami s presné. Inymi slovami, nie je potrebné
zaoberat sa zaokrtihlovacimi chybami, ktoré by mohli nastat pri praktickej implementacii.

Na plny pocet bodov je potrebné ndjst rieSenie s (asymptoticky) optimélnou ¢asovou zlozitostou a dokazat jeho
spravnost. Pomalsie rieSenia mo6zu dostat nanajvys 8 bodov ak su efektivne pre n < 100000, nanajvys 6 bodov
ak st efektivne pre n < 5000, resp. nanajvys 4 body ak st efektivne pre n < 50.

Priklady
vstup vystup vstup vystup vstup vystup

00 NIE 10 -2.4 -0.2
10 10 -2 0 8 5
11 9 9.8 1.4
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V prvom priklade vstupu leZia vietky body na jednej priamke, rieSenim je Iubovolny obdlznik, ktorého jedna
strana lezi na tejto priamke a obsahuje vSetky naSe body. V druhom priklade hladany obdlznik neexistuje. V
trefom priklade existuje jediné riesenie. Vsimnite si, Ze niektoré vrcholy obdlznika ma, ji necelociselné siradnice.
Vsetky tri priklady st na obrazkoch nizsie.
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-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 ! -3 -2 -1 0 1 2 3 1 5 6 7 8 9 10 11 12
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A-11-3  Tovaren

Mame tovaren s p pracovnikmi a n objedndavok. Objednavky st oc¢islované od 0 po n — 1 v poradi, v akom sme
ich dostali.

Na vyrieSenie kazdej objednavky potrebujeme dva stivislé kalendarne mesiace ¢asu, pricom na objednavke ¢
mus{ pocas prvého mesiaca robit A[i] a poc¢as druhého mesiaca Bli] pracovnikov.

Sme zmluvne zaviazani dodrzat poradie objednévok pri ich plneni — pre Ziadne ¢ < j nesmieme neskor prijata
objedndvku j splnit ostro pred skor prijatou objednavkou . Ak na to ale mame dost zamestnancov, mdzeme
lubovolne vela po sebe prijatych objednavok splnit v tych istych dvoch mesiacoch.

Navrhnite algoritmus, ktory vypocita minimalny pocet mesiacov potrebny na splnenie vsetkych objednavok.

Format vstupu a vystupu

V prvom riadku vstupu su ¢isla p a n. ZvySok vstupu tvori n riadkov. Na i-tom riadku st parametre i-tej
objednavky A[i] a Bl[i].

Na vystup vypiste jediné ¢islo: minimalny pocet mesiacov, za ktory vieme spracovat vSetky objednavky.

Obmedzenia a hodnotenie
Vsetky ¢isla na vstupe st celé a nezdporné. Pre kazdd objednavku plati 0 < Afi], B[i] < p.

Plny pocet bodov mézu ziskat rieSenia efektivne pre p < 10° a n < 5000.
Nanajvys 8 bodov mézu ziskat rieSenia efektivne pre p < 109 a n < 300.
Nanajvys 6 bodov mo6zu ziskat riesenia efektivne pre p,n < 100.
Nanajvys 4 body mézu ziskat rieSenia efektivne pre p < 10% a n < 12.

Priklady
vstup vystup vstup vystup vstup vystup
1000 4 3 1000 3 4 1000 5 4
300 100 100 800 500 499
300 100 100 800 500 500
100 800 100 800 11
700 200 500 500
499 500

Prvy priklad: Pocas prvych dvoch mesiacov by sme vedeli robit na objedndavkach 0, 1 a 2 siicasne. Objednavku
3 by sme potom ale nevedeli spravit skor ako pocas tretieho a Stvrtého mesiaca. Lepsim rieSenim bude pocas
prvého mesiaca zacat len objedndvky 0 a 1 (potrebujeme 3004300 = 600 zamestnancov), pocas druhého mesiaca
ich dokoncit a zdroven zacat objedndvky 2 a 3 (potrebujeme 100+100+100+700 = 1000 zamestnancov) a pocas
tretieho mesiaca dokoncit objedndvky 2 a 3 (potrebujeme 800+200 = 1000 zamestnancov).

Druhy priklad: Nemézeme nikdy zacat dve objednavky naraz — sice by sme na to mali prvy mesiac dost za-
mestnancov, ale druhy mesiac by sme ich potrebovali aspon 1600, ¢co nemame. Optimalne je kazdy mesiac zacat
jednu objednavku.
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A-11-4 Nechaj to na solver Il

K tejto tlohe patri studijny text uvedeny nizsie. Je zhodny so studijnym textom z domaceho kola.

Poduloha A: slabé zavislosti (2 body)

Pripomenme si tlohu z doméceho kola: Mame e eur. Existuje n projektov (oéislovanych od 1 po n), do ktorych
ich vieme investovat. Kazdy projekt bud podporime alebo nie. O kazdom projekte vieme, akou sumou s; ho
treba podporit a akt hodnotu v; ¢asom dostaneme spét ako vynos, ak ho podporime.

Slabd zdvislost medzi projektmi vyzerd nasledovne: projekt x; mozeme podporit len vtedy, ak zaroven s nim
podporime aspon jeden spomedzi projektov y; 1, ¥i 2, - - -, Yi,z - Napr. projekt na pestovanie bio kapusty sa nevie
uskutocnit ak nebude podporeny ani projekt na montdz automatického zavlazovania ani projekt na 3D tlac
obojrucnych krhiel.

Popiste, ako pre dant sadu projektov a zoznam slabych zavislosti medzi nimi zostrojit ILP, ktorého optimélne
rieSenie bude zodpovedat sade projektov, ktorych podporenim ziskame maximalny celkovy profit. Popiste cely
ILP, vratane casti, ktoré ostavaju rovnaké ako v doméacom kole.

Priklad: Mame e = 110000 eur a n = 5 projektov.

Sumy s; na ich podporu st 50000, 50 000, 20 000, 40 000, 49999 a vynosy v; su 50 100, 95, 26 000, 900 000, 1.
Mame dve slabé zévislosti: projekt 4 zavisi na projekte 3 (teda z1 =4, 21 =1l a y;1 = 3)

a projekt 3 zavisi na projektoch 2 a/lebo 5 (teda x9 =3, 20 =2, yo1 =2 a Y22 = 5).

Optimalnym riesenim je podporit projekty 2, 3 a 4. Na konci budeme mat 816 095 eur.

Ak by sme v tej istej situdcii mali len 100000 eur, optiméalne by bolo podporit iba projekt 1.

Poduloha B: zjazdovky (8 bodov)

V okoli horskej dediny je k kopcov (oéislovanych od 1 po k), na ktorych sa daji stavat zjazdovky. Na kazdom
kopci ich vieme postavit najviac tri. Kazda zjazdovka postavens na kopei ¢ musi mat celo¢iselnd dizku, a to
aspon ¢; metrov a nanajvys u; metrov. Postavit kazdy meter zjazdovky na kopci ¢ nés stoji ¢; eur.

Cheeli by sme, aby naSe lyziarske stredisko malo celkovii dizku zjazdoviek presne d metrov.

Popiste, ako zostrojit ILP, ktory bude mat riesenie prave vtedy, ak sa nas ciel da dosiahnut, a navyse ktorého
optimalne rieSenie bude zodpovedat najlacnejSiemu moznému sposobu postavenia hladanej sady zjazdoviek.

Priklad: Mame k = 2 kopce. Na prvom sa daju stavat zjazdovky diiky £1 = 1000 az u; = 1100 metrov, a to
meter za ¢; = 100 eur. Na druhom sa daju stavat zjazdovky dféky ly = 300 az us = 400 metrov, a to meter za
ce = 70 eur. Chceme stredisko s 2410 metrami zjazdoviek.

Jednym optimalnym rieSenim je postavit na prvom kopci dve zjazdovky dizok 1003 a 1007 metrov a na druhom
kopci jednu zjazdovku dizky 400 metrov. Dokopy zaplatime 229 000 eur.

Ciastoéné body za tito podilohu mozete ziskat vyrieSenim lahSej verzie tejto tlohy: Nanajvys 6 bodov
dostanete za vyrieSenie tlohy, v ktorej na kazdom kopci vieme postavit najviac jednu zjazdovku. Nanajvys 3
body dostanete za vyrieSenie tlohy, ak navyse k predchadzajicej podmienke budete predpokladaft, ze pre kazdy
kopec plati £; = u;. Ak budete odovzdédvat riesenie niektorej z tychto lahsich loh, vyrazne to v niom uvedte.

strana 6 z 10 tloha A-I1-4



41. ro¢nik (2025/2026)
zadania krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

Studijny text: Celodiselné linearne programovanie

V tomto ro¢niku Olympiddy sa budeme pozerat na optimalizacné problémy — teda na problémy, ktoré maji
vela réznych rieseni a nasou tlohou je néjst to najlepsie z nich. Napriklad nas méze zaujimat:

¢ Ako najlacnejsie precestovat vSetky mesta na Slovensku?
¢ Do najmenej kolkych skatul viem pri stahovani zbalit vSetky svoje knihy?
e Ak velkost ma najvicsia podmnozina riesitelov tohto roénika OI, v ktorej sa vSetci navzdjom poznaju?

Mnohé optimaliza¢né problémy maji jednu spolo¢ni neprijemnu vlastnost: nepozname pre ne ziadne efektivne
algoritmické riesenie. Empiricky si dovolime tvrdif, ze do tejto smutnej kategérie patri znacnéd vacsina optima-
lizaénych problémov, ktoré stretneme vselikde v praxi — ¢i uz v poéitacoch (napr. scheduling procesov, routing
paketov v sietach) alebo v ,redlnom Zivote“ (napr. logistika vSetkého druhu, optimalizdcia nakladov, ¢i rézne
problémy v bioinformatike). A mimochodom, patria sem aj vSetky tri vySsie uvedené problémy.

Situdcia je este o cosi horsia. Nielen, ze k tymto tloham nepozname ziaden algoritmus, ktory by ich riesil
efektivne (teda v Casovej zlozitosti polynomidlnej od velkosti vstupu), my dokonca méme aj velmi dobré dévody
domnievaft sa, ze takyto algoritmus ani neexistuje. Toto celé stvisi s jednou z najdolezitejsich otvorenych otazok
sucasnej informatiky: otazkou, ¢i sa P rovnd NP. Velmi zjednodusene povedané, ide o otazku, ¢i kazdu ulohu,
v ktorej vieme efektivne skontrolovat riesenie, vieme aj efektivne vyriesit. Intuitivne sa vicsine vedcov zda, ze
to skor nebude pravda — porovnajte si napriklad, ako tazké moze byt ru¢ne vyriesit ¢o i len obycajné sudoku,
a ako lahké je pre Tubovolné sudoku skontrolovat, ¢i je vyriesené spravne. Na tomto priklade si tiez mézeme
uvedomif, ze znalost postupu kontroly spravnosti rieSenia nam vo vSeobecnosti ni¢ nepovie o tom, ako nejaké
riesenie efektivne hladat.

Ale to je ndm v praxi vlastne jedno. V situécii, kedy pre nasu tazkua ulohu neexistuje ziaden efektivny algoritmus,
sme na tom presne rovnako ako v situdcii, kedy existuje, ale nepozname ho. Ak potrebujeme optimélne vyriesit
nejaky vstup, sme tak ¢i onak odkézani na hrubu silu, ¢ize na prezretie vsetkych moznosti.

Ani rieSenia hrubou silou vak nie st vietky rovnocenné. Casto takéto riesenie vieme zefektivnit tak, ze nebudeme
prezerat Uplne vsetky moznosti, ale sikovne vynechame ¢o najviac casti prehladdvania, ktoré k najlepSiemu
rieSeniu nevedd. Pre mnohé optimalizacné problémy sme takto vyvinuli konkrétne algoritmy, ktoré sice nie su
efektivne (ich Casové zlozitost je nadalej exponencidlna od velkosti vstupu), ale vdaka vhodnému ,orezaniu®
prehladavania vedia v rozumnom ¢ase vyriesit omnoho vécsie vstupy ako priamociare riesenie skisajtce vsetky
moznosti.

Tu sa vsak niektoré mudre hlavy zamysleli a uvedomili si: v mnohych tychto jednotlivych algoritmoch robime
velmi podobne vyzerajice optimalizacie. Nevedeli by sme to zovsSeobecnit? V tomto rocniku Olympiady sa
budeme zaoberat jednou z kladnych odpovedi na tato otdzku.

Celoéfselné linearne programovanie (po anglicky integer linear programming') je sposob, ako matematicky
popisat niektoré optimalizacné problémy. ILP je dobré v tom, Ze niekto uz za nas spravil vsetku ta skutocne tazkta
pracu — v stcasnej dobe uz existuje viacero velmi kvalitne optimalizovanych solverov,? ktoré vedia z takéhoto
matematického popisu najst optimélne rieSenie popisanej tlohy. A navysSe casto plati, ze vdaka vseobecnym
optimalizaciam to takyto solver spravi efektivnejsie, ako keby sme si sami pisali a nasledne sami vylepsovali
Specializovany algoritmus pre nasu konkrétnu tlohu. Vdaka tomu dostdvame novy sposob, ako riesit tazké
problémy: namiesto implementacie celého vlastného riesenia sa modzeme zamysliet nad tym, ¢i a ako tento
problém vieme zapisat ako ILP. Ak sa ndm to podari, moéZzeme potom na rieSenie nasho problému pouzit ILP
solver. A presne toto budete robif pri rieseni sttaznych tloh v tomto ro¢niku Olympiady.

Formalna definicia ILP

V celom dalsom texte bude slovo konstanta oznacovat lubovolné konkrétne (mozno aj zadporné) celé ¢islo a
slovo premennd oznacovat nezndmu, ktord moze nadobudat ITubovolni nezaporni celoéiselnt hodnotu.
Celociselny linedrny program (v zdkladnej, tzv. kanonickej podobe) sa skladd z nasledujicich casti:

IPre techniku ako celok aj pre jednotlivé celoéiselné linedrne programy budeme v dalSom texte pouzivat anglicki skratku ILP.
2Pojem ,solver“ sme sa rozhodli neprekladat, ,riesitel je ¢lovek a ,riesi¢“ znie divne :)
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Obmedzenia: Sada linedrnych nerovnic, z ktorych i-ta ma tvar a; 1 - x1 + - + @i n - Tn < by,
pricom vsetky a; ; aj b; si konstanty. Tieto obmedzenia musia byt vSetky dodrzané.

Cliel: linedrny vyraz tvaru ¢y - x1 + -+ - + ¢, - T, kde ¢; st konstanty a x; premenné.

Kazdé priradenie hodndt premennym, pre ktoré sii splnené vsetky obmedzenia, budeme volat platné riesenie. Tie
platné rieSenia, pre ktoré cielovy vyraz nadobida najvacésiu mozni hodnotu, budeme volat optimdine.

Existuju samozrejme aj ILP, ktoré nemaju ziadne optimalne riesenie. To mdze mat dva dévody: bud sa nesplni-
telné (napr. mdme obmedzenia x; < 7 a —x1 < —8, ¢iZe x1 > 8) alebo s neohranicené (napr. neméame Ziadne
obmedzenia a chceme maximalizovat hodnotu x1 + 2x3).

Volnejsia, praktickejsia definicia ILP
Programy, ktoré budeme neskor pisat my, budi o nie¢o vSeobecnejsie:

e Dovolime aj programy, v ktorych je ciefom minimalizovat hodnotu konkrétneho vyrazu a tento vyraz moze
navyse obsahovat aj sc¢itanec, ktory je len konstanta.

e Dovolime aj obmedzenia, v ktorych je namiesto znamienka < znamienko > alebo =.

e V obmedzeniach mo6zeme robit vsetky Standardné aritmetické tpravy, napr. vynechavat scitance tvaru
0 - z;, lubovolne prehadzovat s¢itance medzi lavou a pravou stranou a vhodne pouzivat zatvorky.

Rozmyslite si, ze vSetky tieto zmeny slizia len k lepsej ¢itatelnosti nasich programov: totiz napr. minimalizovat
x + 3y + 1000 je to isté ako maximalizovat —r — 3y, obmedzenie 2z — 6y > y — 13 je len ina¢ zapisany vyraz
—2z 4 Ty < 13, a obmezenie 2z = 5y je to isté ako dve obmedzenia 2x < 5y a 2x > by.

Priklad: kuracie nugetky

Zadanie: Stanok predéva tri rozne balenia kuracich nugetiek: 6 ks za 2 eura, 9 ks za 2,90 alebo 20 ks za 6,10.
Kolko najviac nugetiek vieme dostat za 32 eur?

Nespravne pazravé rieSenie: Ked si pre kazdé balenie spocitame, kolko zaplatime za jednu nugetku, najlepsie
vychadza to najvacsie. Za 32 eur moézeme nakupit 5 najvacésich baleni, ¢im dostaneme 100 nugetiek. Toto ale
nie je optimélne rieSenie — existuje iny sposob ako vyuzit peniaze, ktoré mame, a skoncit s viac nugetkami.
(Vsimnite si, Ze pri tomto rieSen{ ndm okrem 100 nugetiek ostalo nevyuzitych 1,50 eura, za ktoré si uz ni¢
nevieme kipit.)

Tato 1tloha sa vo vSeobecnosti neda riesit pazravo. N&s priklad s nugetkami je Specidlnym pripadom znadmeho
typu optimalizacnych tloh zndmych pod spoloénym ndzvom problém batoha (anglicky: knapsack). Pre malé
vstupy vieme optimélne rieSenia néjst pomocou dynamického programovania, ale vo vSeobecnosti je riesenie
tohto problému tazké.

Linearny program: Oznac¢me si 1 pocet malych, xo pocet strednych a x3 pocet velkych baleni, ktoré kupime.
Nasim cielom je maximalizovat celkovy pocet nugetiek, ktoré kipime, teda hodnotu 627 4+ 9z5 + 20x3. Dodrzat
pritom musime obmedzenie, ze celkova cena za ndkup nesmie prekrocit nas rozpocet, teda (v centoch, aby vsetko
boli celé ¢isla) musi platit: 200z + 290z + 61025 < 3200.

Praktické riesenie: Nas linedrny program sa v syntaxi, ktorej rozumie solver 1p_solve, zapiSe nasledovne:

max: 6x_1 + 9x_2 + 20x_3;
200x_1 + 290x_2 + 610x_3 <= 3200;
int x_1, x_2, x_3;

Ked zadame 1p_solve vyriesit tento program, dostaneme na vystupe nasledovné:

Value of objective function: 102.00000000

Actual values of the variables:
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Dozvedeli sme sa teda, ze najviac vieme ziskat az 102 nugetiek, a to tak, ze kipime 1 malé, 4 stredné a 3 velké
balenia. Celkova cena nakupu je 31,90, na konci teda budeme mat 102 nugetiek a nepouzitych 10 centov.

Vyber si solver

My sme si pre tento Studijny text vybrali jeden konkrétny solver: 1p_solve. V rieSeniach prikladov pouzivame
syntax, ktorej tento solver rozumie.

Na stranke https://oi.sk/apps/ilp/ najdes niekolko réznych navodov, aky solver si vybrat a ako ho pouzit
na praktické riesenie ILP podla toho, aky OS a programovaci jazyk preferujes. V domacom kole si taktiez mozes
najst na internete nejaky iny solver a pouzit ten, ak sa ti nas vyber nebude pacit.

Priklad: sudoku

Obcas nas namiesto optimalizdcie (ndjdi najlepsie riesenie spomedzi mnohych) méze zaujimat jednoducho néj-
denie tiplne lubovolného platného rieSenia, resp. rozhodnutie, ¢i vobec nejaké platné riesenie existuje.
Samozrejme, aj na rieSenie takychto tloh vieme ,zneuzit“ ILP solver: stac¢i mu nedat Ziadny ciel (alebo napr.
dat maximalizovat hodnotu vyrazu ,0“).

Pozrime sa napriklad na znamu logickt tlohu: sudoku. V tejto tlohe je cielom vyplnit mriezku rozmerov 9 x 9
¢slami od 1 po 9 tak, aby sa v kazdom riadku, stipci aj ,velkom* Stvorci 3 x 3 vyskytovalo kazdé z &isel 1 az
9 prave raz.

V tomto priklade si ukdzeme, ako vieme pravidla sudoku sformulovat ako ILP. Zdalo by sa, ze budeme chciet
81 premennych: pre kazdé policko tabulky premennt predstavujicu hodnotu, ktord na nom ma byt. A ano, aj
takouto cestou sa vieme dostat ku sformulovaniu sudoku ako ILP, nechame si ju ale na neskor. V tomto priklade
sa vyberieme inou cestou: pouzijeme 9x9x9 boolovskych (t.j. logickych, resp. bindrnych) premennych. Premennd
x; ;% bude 1, ak mé na suradniciach (7, 7) byt hodnota k, resp. to bude 0, ak tam hodnota k byt nemd.
Pozrime sa teraz, ako mézu vyzerat vSetky pravidla sudoku zapisané ako linearne rovnice a nerovnice.

e Na kazdom policku je prave jedno ¢islo.
Pre kazdé 7 a j madme podmienku x; ;1 + ;52 + -+ + T4 50 = 1.

e V kazdom riadku sa kazdé ¢islo nachddza prave raz.
Pre kazdé 7 a k mame podmienku x; 1 + Ti2r + -+ Zi0x = 1.

« Analogické podmienky ako pre riadky mame aj pre kazdy stipec a kazdy tvorec.
Ak teraz chceme vyriesit konkrétne sudoku pomocou 1p_solve, spravime to nasledovne:

e Vygenerujeme (napr. jednoduchym programom, ktory si napiSeme v beZnom programovacom jazyku)
vSetky vyssie uvedené obmedzenia predstavujice vseobecné pravidla sudoku.

e Priddme informéciu, ze vSetky w;; si boolovské premenné. To vieme spravit tak, Ze kazdej priddme
obmedzenie x; ;1 < 1.
Premenné nadobudajice len hodnoty 0 a 1 st vSak pri modelovani problémov natolko bezné, ze asi kazdy

solver bude mat $pecidlnu syntax pre priame deklarovanie takychto premennych. Napr. v 1p_solve staci
takéto premenné namiesto ako int deklarovat ako bin.

¢ Priddme obmedzenia popisujice konkrétne zadanie, ktoré sa snazime vyriesit. Ak napr. v zadani mame v
prvom riadku a tretom stlpci uz predpisané ¢islo 7, priddme obmedzenie z1 37 = 1.
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Priklad: sudoku po druhé

Ako by vyzeralo modelovanie sudoku, ak by sme chceli pre kazdé policko pouzit premennt v; ;, ktorej hodnota
by mala priamo zodpovedat hodnote nachadzajicej sa na prislusnom policku? Zjavne potrebujeme obmedzenia
v ; > 1lawv;; <9. Okrem nich by uz stacilo len pridat obmedzenia hovoriace, Ze niektoré dvojice policok nesmu
mat rovnakt hodnotu. Takychto obmedzeni budeme potrebovat celkom vela: jednu pre kazdi dvojicu policok
v rovnakom riadku, v rovnakom stipci, aj v rovnakom $tvorci 3 x 3. Napr. pre kazdé dve policka (i,z) a (i,y)
v riadku 7 potrebujeme obmedzenie v; , # v;,. Tu vSak médme problém: Toto obmedzenie nema ani jeden z
povolenych tvarov, a ani ju nevieme priamociaro vyjadrit pomocou povolenych obmedzeni.

Zelané obmedzenie vieme zapisat ako logicky or dvoch podmienok: mé platit bud v; . < vy alebo v; » > v; 4.
KedZe vsetky v; ; st celé ¢isla, tieto podmienky vieme upravit do povoleného tvaru: mé platit bud v; , < v, —1
alebo v; o > v; 4 + 1.

Toto ale stéle nie je OK: v ILP musia byt splnené vSetky podmienky naraz. To zodpoveda logickému and, nie
logickému or. Co s tym vieme spravit?

Pomoézeme si drobnym trikom. Zavedieme novi bindrnu premennd r. (Sprdvne by sme ju mali nazvat napr.
Ti.a,1,y, KedZze budeme pre kazdd dvojicu premennych, ktoré sa nemajt rovnat, potrebovat jednu novii premenna.
Pre lepsiu citatelnost ju ale tu budeme volat len 7.) Hodnota r ndm bude hovorit, ¢i mé byt mensia prva alebo
druhd z hodné6t v. Pozrime sa teraz na nasledujice dve obmedzenia:

Vigz — Viy = 1 —10r
Uiy — Vg > 1—10(1—1) =10r—9

Ak r = 0, dostdvame podmienky v; , — v;y > 1 a v;y — V5, > —9. Prva z nich hovori v; , > v;, a druhd je
trividlne splnend pre Iubovolné v; 4, v, € {1,2,...,9}. (Konstantu 10 sme zvolili prave tak, aby toto platilo.
Vyuzivame teda, ze pozndme rozsah hodnét, ktoré mézu v; , a v;, nadobtdat.)

A naopak, ak zvolime r = 1, dostaneme jednu trividlne splnent podmienku a jednu, ktora hovori v; , < v; .
Pridanim tejto novej premennej r a vyssie uvedenych dvoch obmedzeni sme teda dosiahli, to, ¢o sme chceli: pre
IubovoIné v; , # v;, vieme obe tieto obmedzenia splnit, zatial ¢o pre v;, = v;, ich naraz obe splnit nejde.

Priklad: ¢o takto robit nevieme

Méme lietadlo, ktorym chceme preletief 1000 km z jedného letiska na druhé. Mézeme si v rdmci povolenych
rozsahov zodpovedajicich modelu lietadla zvolit letovii hladinu h (vysku v km, v ktorej poletime, v rozsahu 10
az 13 km) a rychlost letu v (v km/h, v rozsahu 600 az 900 km/h). Chceli by sme minimalizovat cenu letu, teda
spotrebu paliva.

Toto tiez zjavne vieme zapisat pomocou vhodnych vzorcov ako optimalizacny problém. Vo velmi zjednodusenej
podobe by to mohlo vyzerat napr. nasledovne: Cas letu bude 1000/v. Ak letime vo vyske h, optimélna rychlost
kvoli odporu vzduchu je vop(h) = 540+ 30h. Vykonnost motorov je najlepsia vo vyske h = 11.5 km. Odchylenie
od tychto parametrov zvySuje spotrebu, ale moze nds dostat do ciela skér. Rychlost spotreby paliva (v kg/h) sa
preto d4 vyjadrit vztahom 2000 4 200(h — 11.5)% + 0.05(v — vepe(h))?. Celkova spotreba paliva je si¢inom tejto
hodnoty a casu letu.

Toto je sice exaktnd matematickd formulécia optimalizacného problému, ale je tu jeden hacik: obmedzenia pre h
a v su sice linedrne, ale funkcia, ktorej hodnotu sa snazime optimalizovat, nie je linedrnou funkciou premennych
h a v. ILP solver nam teda s takto konkrétne sformulovanym problémom nebude vediet pomoct.

Pre vacsiu nazornost este dodame, ze ani omnoho jednoduchsi vyraz h-v nie je linedrny, kedze ide o sic¢in dvoch
premennych.
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